Математическое моделирование течений вязкой жидкости




Математическое моделирование течений вязкой жидкости - стр. 43


.

В отличие от ламинарного движения в круглой трубе, при котором

, в турбулентном движении это отношение уменьшается  с ростом числа Re от 1.3 (при Re = 5000) до 1.15 (при Re = 3×106). При Re®¥ указанное отношение как бы стремится к единице. Это говорит о резком отличии формы профиля скоростей в турбулентном движении от параболы скоростей в ламинарном  движении и объясняется тем, что профили скоростей при переходе  от ламинарного движения к турбулентному становятся более полными, причем степень их заполненности возрастает с увеличением  числа Re.

Более простым, но далеко не универсальным профилем скоростей при турбулентном движении в трубе является так называемый степенной профиль:

. (2.34)

Этот степенной профиль скоростей при числах Re»5×104

имеет вид:

и получил название закона одной седьмой.

Экспериментально было показано, что величина показателя степени "n" зависит от числа Re и с его увеличением падает. Оказалось возможным каждому числу Re подобрать такой показатель степени "n", чтобы полученный профиль скоростей наилучшим образом совпадал с результатами эксперимента.

Отношение максимальной к средней по сечению скорости при степенном профиле может быть найдено следующим образом. Определив

по формуле

,

найдем:

или окончательно:

.

Результаты расчетов при различных "n" можно свести в таблицу:

n

1/6

1/7

1/8

1/9

1/10

1.264

1.224

1.194

1.173

1.156

Можно отметить, что отношения

, полученные по степенному и логарифмическому законам, практически совпадают.

Аналогично обычному степенному закону можно ввести степенное распределение скоростей в виде:

.   (2.35)

Значение коэффициента А можно определить из граничных условий на границе ламинарного подслоя: при y=dл скорость ux=uxл  и постоянная

. Но так как
, а
, то
 и тогда
.

Зная величину a и задаваясь показателем n, можно получить численное значение постоянной А. Если a=11.5, то при n=1/7 А=8.74, и следовательно:




Содержание  Назад  Вперед